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On the Decomposition of Hilbert Spaces
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Abstract. A basic relation between numerical range and Davis-Wielandt

shell of an operator A acting on a Hilbert space with orthonormal basis

ξ = {ei|i ∈ I} and its conjugate Ā which is introduced in this paper

are obtained. The results are used to study the relation between point

spectrum, approximate spectrum and residual spectrum of A and Ā. A

necessary and sufficient condition for A to be self-conjugate (A = Ā) is

given using a subgroup of H.
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1. Introduction

Let H be a Hilbert space and B(H) be the algebra of bounded linear oper-
ators acting on H . The numerical range of A ∈ B(H) is defined by

W (A) = {〈Ax, x〉|x ∈ H, ‖x‖ = 1};
see [4, 5, 6, 7]. The numerical range is useful to study matrices, operators
and to classify them. For example W (A) = {μ} if and only if A = μI and
W (A) ⊆ R if and only if A = A∗. Also, there are nice connections between
W (A) and spectrum σ(A). For instance σ(A) ⊆ cl W (A) where clW (A) is the
closure of W (A) and cl W (A) = conv σ(A) if A is normal (conv σ(A) is the
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convex hull of σ(A)). The Davis-Wielandt shell of an operator A ∈ B(H) is a
generalization of the classical numerical range and it is defined by

DW (A) = {(〈Ax, x〉, 〈Ax, Ax〉) : x ∈ H, ‖x‖ = 1};
see [1, 2, 9]. In fact W (A) is the projection of DW (A) on the first coordinate.

In this paper, we introduce the conjugate of A ∈ B(H) and obtain the
relation between DW (A) and DW (Ā). Also we obtain some relations between
point spectrum, approximate spectrum and residual spectrum of A and Ā.
In section 3 we obtain a necessary and sufficient condition for A to be self-
conjugate (A = Ā) by a subgroup of H. Also we find the form of an operator
D ∈ B(H) such that W (D) ⊆ {(x, x)|x ∈ R}.

2. The conjugate of an operator

In [8], for A ∈ B(H), At is defined. In the following we introduce a new
operator that has similar properties.

Definition 2.1. Let H be a Hilbert space, A ∈ B(H) and ξ = {ei|i ∈ I} be an
orthonormal basis of H. The conjugate of A with respect to ξ is the operator
Āξ ∈ B(H) defined by

〈Āξei, ej〉 = 〈Aei, ej〉,
for every i, j ∈ I.

Let x =
∑

i∈I xiei ∈ H . Define x̄ =
∑

i∈I x̄iei, where x̄i is the complex
conjugate of xi. Let y =

∑
j∈I yjej ∈ H . we have

〈Āξx, y〉 =
∑

i

∑

j

xiȳj〈Āξei, ej〉 =
∑

i

∑

j

x̄iyj〈Aei, ej〉 = 〈Ax̄, ȳ〉.

By the above discussion we see that the definition of Āξ is independent of ξ,
so we denote the conjugate of A by Ā.
Also we know that 〈x̄, ȳ〉 = 〈x, y〉 and we have 〈Ax̄, ȳ〉 = 〈Āx, y〉 = 〈Ax̄, y〉 for
every x, y ∈ H . Hence Āx = Ax̄. Furthermore, we recall that

〈Atx, y〉 = 〈Aȳ, x̄〉,
for every x, y ∈ H [8].

Lemma 2.2. Let A, B ∈ B(H) and α ∈ C be an arbitrary constant. Then:
a) Ā = (At)∗;
b) (A + αB) = Ā + ᾱB̄ and AB = ĀB̄.

Proof. a)We have

〈(At)∗x, y〉 = 〈x, Aty〉 = 〈ȳ, Ax̄〉 = 〈Ax̄, ȳ〉 = 〈Āx, y〉,
for every x, y ∈ H. Thus the assertion follows.
b) Let x, y ∈ H be arbitrary. then
〈(A + αB)x, y〉 = 〈(A + αB)x̄, ȳ〉 = 〈Ax̄, ȳ〉+ 〈αBx̄, ȳ〉 = 〈Āx, y〉+ ᾱ〈B̄x, y〉 =
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〈(Ā + ᾱB̄)x, y〉.
Since x, y are arbitrary, the result follows. On the other hand,
〈(AB)x, y〉 = 〈(AB)x̄, ȳ〉 = 〈A(Bx̄), ȳ〉 = 〈Bx̄, A∗ȳ〉 = 〈B̄x, A∗ȳ〉 = 〈B̄x, A∗ȳ〉 =

〈A(B̄x), ȳ〉 = 〈Ā(B̄x), y〉 = 〈(ĀB̄)x, y〉
and hence AB = ĀB̄. �

Recall that the point spectrum of A ∈ B(H) is the set σp(A) of eigenvalues
of A. The residual spectrum of A is the set σr(A) of complex numbers λ such
that the range of λI − A is not dense in H . The approximate spectrum of A is
the set σa(A) of complex numbers λ such that there exists a sequence of unit
vectors {xn}∞n=1 in H such that limn→∞ ‖(λI − A)xn‖ = 0. It is well known
that σp(A) ⊆ σa(A) and σ(A) = σa(A)

⋃
σr(A); see [3].

In the following theorem, we obtain some relations between the Davis-Wielandt
shell and the spectrum of A and Ā.

Theorem 2.3. . Let A ∈ B(H). Then:
a) DW (Ā) = {(μ̄, r)|(μ, r) ∈ DW (A)}
b) σp(Ā) = σp(A), σa(Ā) = σa(A) and σr(Ā) = σr(A).

Proof. a) (μ, r) ∈ DW (Ā) if and only if 〈Āx, x〉 = μ, 〈Āx, Āx〉 = r for some
unit vector x. Since 〈Āx, x〉 = 〈Ax̄, x̄〉 and ‖x̄‖ = 1, then μ̄ = 〈Ax̄, x̄〉 ∈ W (A).
Also

〈Āx, Āx〉 = 〈Ax̄, Āx〉 = 〈Āx, Ax̄〉 = 〈Ax̄, Ax̄〉.
Therefore
(μ, r) = (〈Āx, x〉, 〈Āx, Āx〉) ∈ DW (Ā)) if and only if (〈Ax̄, x̄〉, 〈Ax̄, Ax̄〉) =
(μ̄, r) ∈ DW (A), and the result follows.
b) μ ∈ σp(Ā) if and only if 〈(Ā − μI)x, y〉 = 0 for all y ∈ H and some
nonzero vector x. We have 〈(Ā − μI)x, y〉 = 0 if and only if 〈(A − μI)x̄, ȳ〉 =
〈(Ā − μI)x, y〉 = 0. Thus the first assertion holds.
We know that μ ∈ σa(Ā) if and only if there is a sequence {xn}∞n=1 of unit
vectors such that limn→∞((μI − Ā)xn) = 0. We have

0 = lim
n→∞(μxn − Āxn) = lim

n→∞(μxn − Ax̄n),

which implies that 0 = limn→∞ (μxn − Ax̄n) = limn→∞(μxn − Ax̄n), and the
second assertion holds. If μ ∈ σr(Ā), then cl(Im(μI − Ā)) �= H and vice versa.
This holds if and only if there exists a nonzero vector z ∈ H which is orthogonal
to Im(μI − Ā). Hence for any x ∈ H we have
0 = 〈(μI − Ā)x, z〉 = 〈x, (μI − Ā)∗z〉 = 〈x, (μ̄I − At)z〉 = 〈x, μ̄z〉 − 〈x, Atz〉 =
μ〈x, z〉 − 〈z̄, Ax̄〉 = μ〈z̄, x̄〉 − 〈z̄, Ax̄〉 = 〈z̄, (μ̄I − A)x̄〉.
Since x is arbitrary, thus z̄ ∈ (Im(μ̄I−A))⊥ and cl(Im(μ̄I−A)) �= H . Therefore
μ̄ ∈ σr(A) and vice versa. �
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3. Decomposition of a Hilbert space

Let H be a Hilbert space and ξ = {ei|i ∈ I} be an orthonormal basis of H .
Define Hξ

R
= {x ∈ H |x = x̄}. Since 0 = 0̄, 0 ∈ Hξ

R
. It is clear that Hξ

R
is a

subgroup of H .

Theorem 3.1. Let H be a Hilbert space with orthonormal basis ξ = {ei|i ∈ I}.
Then H ≡ Hξ

R
× Hξ

R
and each x ∈ H can be uniquely written as x = a + ib,

where a, b ∈ Hξ
R
.

Proof. Let x ∈ H be arbitrary. We have x + x̄ = x̄+x. Thus x̄+x ∈ Hξ
R
. Also

i(x̄ − x) = i(x̄−x). Then i(x̄− x) ∈ Hξ
R
. Therefore x = a + ib, where a = x+x̄

2

, b = i(x̄−x)
2 and a, b ∈ Hξ

R
. Now we show that the above decomposition is

unique. Let x = a + ib = a′ + ib′ where a′, b′ ∈ Hξ
R

and

a =
∑

i∈I

aiei, b =
∑

i∈I

biei, a
′ =

∑

i∈I

a′
iei, b

′ =
∑

i∈I

b′iei.

Since a, b, a′, b′ ∈ Hξ
R
, then for every i ∈ I, ai, bi, a

′
i, b

′
i ∈ R,

∑

i∈I

((ai − a′
i) + i(bi − b′i))ei = 0.

So we have ai = a′
i and bi = b′i for every i ∈ I, which proves the uniqueness. �

We remark that if x = a + ib ∈ H and a, b ∈ Hξ
R
, then x̄ = a − ib.

Theorem 3.2. Let A ∈ B(H) with orthonormal basis ξ = {ei|i ∈ I}. The
following conditions are equivalent:
a) Ax̄ = Ax for all x ∈ H ;
b) A = Ā;
c) Hξ

R
is A- invariant (A(Hξ

R
) ⊆ Hξ

R
).

Proof. a ⇒ b and b ⇒ c are trivial. we prove c ⇒ a.
Let x = α + iβ ∈ H be arbitrary and α, β ∈ Hξ

R
. We have

Ax̄ = A(α − iβ) = Aα − iAβ. Since we assumed that Hξ
R

is A- invariant, then
by previous remark we have

Aα − iAβ = Aα + iAβ = A(α + iβ) = Ax.

�

Corollary 3.3. Let H be a Hilbert space with orthonormal basis ξ = {ei|i ∈ I}.
Then for all x = a + ib ∈ H (where a, b ∈ Hξ

R
), ‖x‖2 = ‖a‖2 + ‖b‖2.

Proof. We have

‖x‖2 = 〈x, x〉 = 〈a + ib, a + ib〉 = ‖a‖2 + ‖b‖2 + i〈b, a〉 − i〈a, b〉.
We show that for all a, b ∈ Hξ

R
, 〈b, a〉 = 〈a, b〉.

Let a =
∑

i∈I aiei, b =
∑

j∈I bjej . (Since a, b ∈ Hξ
R
, we have ai, bj ∈ R, for any
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i, j ∈ I). It follows that
〈a, b〉 = 〈∑i∈I aiei,

∑
j∈I bjej〉 =

∑
i∈I

∑
j∈I aib̄j〈ei, ej〉 =

∑
j∈I

∑
i∈I bjai〈ej , ei〉 =

〈∑j∈I bjej,
∑

i∈I aiei〉 = 〈b, a〉.
Thus ‖x‖2 = ‖a‖2 + ‖b‖2 as asserted.

�

Definition 3.4. Let H be a Hilbert space. The operator A ∈ B(H) is called
self-conjugate, if A = Ā.

Let
B(H)R = {A ∈ B(H) : A = Ā}.

It is clear that for every Hilbert space H , B(H)R is a subring of H .
Note that for elements of a Hilbert space the concept of conjugate depends on
the orthonormal basis. However, for the sake of simplicity, we put aside the
notation of orthonormal basis when we refer to the conjugate of Hilbert space
elements.

Corollary 3.5. Assume that A ∈ B(H)R. Then At, A∗ ∈ B(H)R and A−1 ∈
B(H)R if A is invertible.

Proof. Let A ∈ B(H)R and x, y ∈ H be arbitrary. We have

〈(At)x, y〉 = 〈Atx̄, ȳ〉 = 〈Ay, x〉 = 〈Ay, x̄〉 = 〈Aȳ, x̄〉 = 〈Atx, y〉.
Since x, y are arbitrary, we have At ∈ B(H)R. Similarly, A∗ ∈ B(H)R. Now
let A be invertible and x, y ∈ H be arbitrary. Consider A−1ȳ = y0, A

−1x̄ = x0.
By Theorem 3.2, Ax̄0 = Ax0 = x and Ay0 = y. Thus,
〈(A−1)x, y〉 = 〈(A−1)x̄, ȳ〉 = 〈x0, Ay0〉 = 〈x̄0, Ay0〉 = 〈A−1(Ax̄0), Ay0〉 =
〈A−1(Ax0), Ay0〉 = 〈A−1x, y〉.
Hence, our claim follows. �

In the following theorem we deduce a necessary and sufficient condition for
W (D) to be a subset of {(r, r) : r ∈ R} when D ∈ B(H).

Theorem 3.6. Let D = A + iB ∈ B(H) and A, B ∈ B(H)R. Then W (D) ⊆
{(r, r) : r ∈ R} if and only if B = At.

Proof. Let H be a Hilbert space and ξ = {ei|i ∈ I} be an orthonormal basis.
Let x = a + ib ∈ H be arbitrary where a, b ∈ Hξ

R
and let D = A + iAt. Then

〈Dx, x〉 = 〈(A+ iAt)(a+ ib), a+ ib〉 = (〈Aa, a〉− 〈Atb, a〉+ 〈Ab, b〉+ 〈Ata, b〉)+
i(〈Ab, a〉+〈Ata, a〉−〈Aa, b〉+〈Atb, b〉) = (〈Aa, a〉−〈Aa, b〉+〈Ab, b〉+〈Ab, a〉)+
i(〈Ab, a〉 + 〈Aa, a〉 − 〈Aa, b〉 + 〈Ab, b〉).
Since 〈Aa, a〉 − 〈Aa, b〉 + 〈Ab, b〉 + 〈Ab, a〉 ∈ R, the result follows.
Conversely let W (D) ⊆ {(r, r) : r ∈ R}. Then D is essentially self adjoint[4,5,6].
Therefore D = αH + βI for some α, β ∈ C and H is Hermitian and there
exists a Hermitian operator T such that D = e

iπ
4 T . Set T = T1 + iT2 where

T1, T2 ∈ B(H)R. Since T = T ∗, thus T1 + iT2 = T ∗
1 − iT ∗

2 . By Corollary 3.5,
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T ∗
1 , T ∗

2 ∈ B(H)R and T1 = T ∗
1 , T2 = −T ∗

2 . Then T1 = T t
1 , T2 = −T t

2 . Now we
have

D = e
iπ
4 (T1 + iT2) =

√
2

2
(T1 − T2) + i

√
2

2
(T1 − T2)t.

If A =
√

2
2 (T1 − T2), the proof is complete. �

Theorem 3.7. Let A ∈ B(H) and Ax = Āx for some 0 �= x ∈ H. Then

W (A)
⋂

W (Ā)
⋂

R �= ∅.
Proof. We may assume that x is a unit vector. Then μ = 〈Ax, x〉 = 〈Āx, x〉 ∈
W (Ā). Hence μ ∈ W (A)

⋂
W (Ā). Since W (Ā) = W (A) by Theorem 2.3, we

have μ̄ ∈ W (Ā)
⋂

W (A). By convexity of numerical range the line segment
joins μ and μ̄ lies in W (A) and W (Ā). This line segment intersects the real
line and the result follows. �

Theorem 3.8. Let H be a Hilbert space and A ∈ B(H). A = λI for some
λ ∈ C if and only if for every α ∈ C, there exists a scalar β ∈ C such that
αA + βI is self-conjugate.

Proof. The implication (⇒) is clear. Suppose that for every α ∈ C, there
exists β ∈ C such that αA + βI is self-conjugate. If H is one dimensional the
result holds. Let ξ = {ei}i∈I be an orthonormal basis for H and ej , ek ∈ ξ

be arbitrary and distinct. First we prove that A is diagonal. Suppose Aej =
Σi∈Iαiei and Aek = Σi∈Iβiei. For every α ∈ C, there exists β ∈ C such that
(αA+βI)ej = Σi∈Iriei, (αA+βI)ek = Σi∈Isiei, and ri, si ∈ R for every i ∈ I.

Hence, for every i �= j, ααi = ri ∈ R and for every i �= k, αβi = si ∈ R. Since
α is arbitrary, we must have αi = 0 for every i �= j and βi = 0 for every i �= k.

Since ej, ek ∈ ξ, A is diagonal. Now, suppose that Aej = λjej and Aek = λkek.
It is enough to show that λj = λk. But for every α ∈ C, there exists β ∈ C,
such that αλjej + βej = rjej and rj ∈ R, and we have αλkek + βek = skek

where sk ∈ R. Thus for every α ∈ R, α(λj − λk) ∈ R. Hence λj − λk = 0 and
the result follows. �
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